LINEAR REGRESSION MODEL

Regression analysis is the part of statistics that deals with investigation of the relationship between two or more variables related in a nondeterministic manner.

A familiar example to many students is given by variables

\[X = \text{high school grade point average (GPA)} \] and
\[Y = \text{college GPA}. \] The value of \(Y \) cannot be determined
just from knowledge of X, and two different students could

have the same X value but have very different Y values.

Yet there is a tendency for those students who have high (low)

high school GPAs also to have high (low) college GPAs.

Knowledge of a student’s high school GPA should be quite

helpful in enabling us to predict how that person will do in college.
* The variable whose value is fixed by the experimenter will be denoted by x and will be called the independent variable.

For fixed x, the second variable will be random. We denote this random variable and its observed value by Y and y, respectively and refer to it as the dependent variable.

* Assume that the response Y is related to the independent
(input) variable x by

$$Y = \beta_0 + \beta_1 x + e.$$

The quantity e is a random variable, assumed to be normally distributed with $\mu = 0$ and $\text{var} = \sigma^2$.

* Usually e is referred to as random error term in the model.

Note that, without e, any observed pair $(x \ y)$ would correspond to a point falling exactly on the line $y = \beta_0 + \beta_1 x$ - called the true regression line.
ESTIMATING THE MODEL

PARAMETERS β_0 AND β_1

Assume that we have n pair of observations

$$(x_1, Y_1), \ldots, (x_n, Y_n)$$

such that

* $Y_i = \beta_0 + \beta_1 x_i + e_i,$

for $i = 1, \ldots, n.$

* x_i - are the values of independent variable x

(predictor variable)
* Y_i - are the responses corresponding to the i-th experimental run.

* e_i - are unknown error components, $e_i = N(0, \sigma)$.

* the parameters β_0, β_1 and σ are unknown.

How to estimate these parameters? Let us choose β_0 and β_1

such that the sum of squared vertical deviations from the points

$$(x_1, Y_1), \ldots, (x_n, Y_n) \text{ to the line}$$
\[y = \beta_0 + \beta_1 x \text{ is minimal, i.e} \]

\[\sum_{i=1}^{n} [Y_i - (\beta_0 + \beta_1 x_i)]^2 = \text{min} \]

Let us denote the corresponding estimators of \(\beta_0 \) and \(\beta_1 \)

by \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \), respectively.

* \(\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \) - is the estimated regression line. Here

\[\hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} = \frac{S_{xy}}{S_{xx}}. \]

* \(\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \)
* The deviations of the observations Y_i from the fitted (estimated) values $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

are called the residuals:

$$\hat{e}_i = Y_i - \hat{Y}_i.$$

The point estimator of the error variance σ^2 is

$$S^2 = \hat{\sigma}^2 = \frac{1}{n - 2} \sum_{i=1}^{n} \hat{e}_i^2 := MSE$$

Note that

$$MSE \cdot (n - 2) = SSE = \sum_{i=1}^{n} \hat{e}_i^2 = S_{yy} - \frac{S_{xy}^2}{S_{xx}}$$

- Sum of Squares due to Error.
INFERENCE CONCERNING THE SLOPE β_1

In a regression analysis problem, it is of special interest to determine whether the expected response does or not does vary with the magnitude of the input variable x. According to the linear regression model,

$$\text{Expected response} = \beta_0 + \beta_1 x.$$

This does not change with a change in x if and only if $\beta_1 = 0$.
We can therefore test the null hypothesis \(H_0 : \beta_1 = 0 \) against

a one- or two- sided alternative, depending of the nature of the

relation that is anticipated.

* Testing hypothesis \(H_0 : \beta_1 = 0 \) against the alternative

\(H_1 : \beta_1 \neq 0 \).

* The test Statistic is

\[
T = \frac{\hat{\beta}_1}{\sqrt{\frac{MSE}{S_{xx}}}}.
\]
The rejection region
\[R : | T | \geq t_{\alpha/2} \]
is \(\alpha/2 \) upper point of t-distribution
with d.f. = n - 2.