
Chapter 4 Supplemental Text Material 
 

S4-1. Relative Efficiency of the RCBD 
In Example 4-1 we illustrated the noise-reducing property of the randomized complete 
block design (RCBD). If we look at the portion of the total sum of squares not accounted 
for by treatments (302.14; see Table 4-4), about 63 percent (192.25) is the result of 
differences between blocks. Thus, if we had run a completely randomized design, the 
mean square for error MSE would have been much larger, and the resulting design would 
not have been as sensitive as the randomized block design. 

It is often helpful to estimate the relative efficiency of the RCBD compared to a 
completely randomized design (CRD).  One way to define this relative efficiency is  
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where are the experimental error variances of the completely randomized and 
randomized block designs, respectively, and  are the corresponding error 
degrees of freedom. This statistic may be viewed as the increase in replications that is 
required if a CRD is used as compared to a RCBD if the two designs are to have the same 
sensitivity. The ratio of degrees of freedom in R is an adjustment to reflect the different 
number of error degrees of freedom in the two designs. 
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To compute the relative efficiency, we must have estimates of . We can use 
the mean square for error MS
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E from the RCBD to estimate , and it may be shown [see 
Cochran and Cox (1957), pp. 112-114] that 
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is an unbiased estimator of the error variance of a the CRD. To illustrate the procedure, 
consider the data in Example 4-1. Since MSE  = 7.33, we have 

2ˆ 7.33bσ =  

and 

2 ( 1) ( 1)ˆ
1

(5)38.45 6(3)7.33
4(6) 1

14.10

Blocks E
r

b MS b a MS
ab

σ − + −
=

−
+

=
−

=

 

Therefore our estimate of the relative efficiency of the RCBD in this example is 
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This implies that we would have to use approximately twice times as many replicates 
with a completely randomized design to obtain the same sensitivity as is obtained by 
blocking on the metal coupons. 

Clearly, blocking has paid off handsomely in this experiment. However, suppose that 
blocking was not really necessary. In such cases, if experimenters choose to block, what 
do they stand to lose? In general, the randomized complete block design has (a – 1)(b - 1) 
error degrees of freedom. If blocking was unnecessary and the experiment was run as a 
completely randomized design with b replicates we would have had a(b - 1) degrees of 
freedom for error. Thus, incorrectly blocking has cost a(b - 1) – (a - 1)(b - 1) = b - 1 
degrees of freedom for error, and the test on treatment means has been made less 
sensitive needlessly. However, if block effects really are large, then the experimental 
error may be so inflated that significant differences in treatment means could possibly 
remain undetected. (Remember the incorrect analysis of Example 4-1.) As a general rule, 
when the importance of block effects is in doubt, the experimenter should block and 
gamble that the block means are different.  If the experimenter is wrong, the slight loss in 
error degrees of freedom will have little effect on the outcome as long as a moderate 
number of degrees of freedom for error are available. 

 

S4-2. Partially Balanced Incomplete Block Designs 

Although we have concentrated on the balanced case, there are several other types of 
incomplete block designs that occasionally prove useful.  BIBDs do not exist for all 
combinations of parameters that we might wish to employ because the constraint that λ 
be an integer can force the number of blocks or the block size to be excessively large.  
For example, if there are eight treatments and each block can accommodate three 
treatments, then for λ to be an integer the smallest number of replications is r = 21.  This 
leads to a design of 56 blocks, which is clearly too large for most practical problems.  To 
reduce the number of blocks required in cases such as this, the experimenter can employ 
partially balanced incomplete block designs, or PBIDs, in which some pairs of 
treatments appear together λ1 times, some pairs appear together λ2 times, . . ., and the 
remaining pairs appear together λm times.  Pairs of treatments that appear together λi 
times are called ith associates.  The design is then said to have m associate classes. 

An example of a PBID is shown in Table 1.  Some treatments appear together λ1 = 2 
times (such as treatments 1 and 2), whereas others appear together only λ2  = 1 times 
(such as treatments 4 and 5).  Thus, the design has two associate classes.  We now 
describe the intrablock analysis for these designs. 

A partially balanced incomplete block design with two associate classes is described by 
the following parameters: 



1 .  There are a treatments arranged in b blocks.  Each block contains k runs and each 
treatment appears in r blocks. 

2. Two treatments which are ith associates appear together in λi blocks, i = 1, 2.  

3. Each treatment has exactly ni ith associates, i = 1,2.  The number ni is independent of 
the treatment chosen. 

4. If two treatments are ith associates, then the number of treatments that are jth 
associates of one treatment and kth associates of the other treatment is pi

jk,  (i , j ,k = 
1, 2).  It is convenient to write the pi

jk as (2 x 2) matrices with pi
jk  the jkth element of 

the ith matrix.                                        4 

 

For the design in Table 1 we may readily verify that a = 6, b = 6, k = 3, r = 3, λ1 = 2, λ2  
= 1, n1 = 1, n2 = 4, 
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Table 1. A Partially 
Balanced incomplete 
Block Design with Two 
Associate Classes 

Block Treatment 

Combinations 

 

1 1 2 3 

2 3 4 5 

3 2 5 6 

4 1 2 4 

5 3 4 6 

6 1 5 6 

 

We now show how to determine the pi
jk . Consider any two treatments that are first 

associates, say 1 and 2. For treatment 1, the only first associate is 2 and the second 
associates are 3, 4, 5, and 6. For treatment 2, the only first associate is 1and the second 
associates are 3, 4, 5, and 6. Combining this information produces Table 2.  Counting the 
number of treatments in the cells of this table, have the {pl

jk} given above.  The elements 
{p2

jk} are determined similarly. 



The linear statistical model for the partially balanced incomplete block design with two 
associate classes is 

    yij = µ + τi + βj + εij              

where µ is the overall mean, τi  is the ith  treatment effect, βj is the jth block effect, and εij  
is the NID(0, σ2) random error component.  We compute a total sum of squares, a block 
sum of squares (unadjusted), and a treatment sum of squares (adjusted). As before, we 
call 
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the adjusted total for the ith treatment.  We also define 
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The analysis of variance is summarized in Table 3.  To test H0: τi = 0, we use 
F0=MSTreatments(adjusted) /MSE. 

 

                 Table 2.  Relationship of Treatments to 1 and 2 

 

Treatment 1 

Treatment 2 

      1st  Associate           2nd Associate 

1st 
associate 

 

2nd 
associate 

                                               3,4,5,6 

 



 

Table 3.   Analysis of Variance for the Partially Balanced 
Incomplete Block Design with Two Associate Classes 

Source of Variation Sum of Squares Degrees of 

Freedom 

Treatments (adjusted) 
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We may show that the variance of any contrast of the form τ τu v−  is 
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where treatments u and v are ith associates (i = 1, 2).  This indicates that comparisons 
between treatments are not all estimated with the same precision.  This is a consequence 
of the partial balance of the design. 

We have given only the intrablock analysis.  For details of the interblock analysis, refer 
to Bose and Shimamoto (1952) or John (1971).  The second reference contains a good 
discussion of the general theory of incomplete block designs.  An extensive table of 
partially balanced incomplete block designs with two associate classes has been given by 
Bose, Clatworthy, and Shrikhande (1954). 

 
S4-3.  Youden Squares 
Youden squares are "incomplete" Latin square designs in which the number of columns 
does not equal the number of rows and treatments.  For example, consider the design 
shown in Table 4.  Notice that if we append the column (E, A, B, C, D) to this design, the 
result is a 5 × 5 Latin square.  Most of these designs were developed by W. J. Youden, 
hence their name. 

Although a Youden square is always a Latin square from which at least one column (or 
row or diagonal) is missing, it is not necessarily true that every Latin square with more 
than one column (or row or diagonal) missing is a Youden square.  The arbitrary removal 
of more than one column, say, for a Latin square may destroy its balance.  In general, a 



Youden square is a symmetric balanced incomplete block design in which rows 
correspond to blocks and each treatment occurs exactly once in each column or 
“position” of the block.  Thus, it is possible to construct Youden squares from all 
symmetric balanced incomplete block designs, as shown by Smith and Hartley (l948).  A 
table of Youden squares is given in Davies (1956), and other types of incomplete Latin 
squares are discussed by Cochran and Cox (1957, Chapter 13). 

 

Table 4. A Youden Square for Five 
Treatments (A, B, C, D, E) 

 
Row 

Column                            
      1              2                3                  4 

1 A B C D 
2 B C D E 
3 C D E A 
4 D E A B 
5 E A B C 

 
The linear model for a Youden square is 

Yijh = µ + αi + τ j + βh + εijh

where, µ is the overall mean, αi is the ith block effect τj is the jth treatment effect, βh is 
the hth position effect, and εijh is the usual NID(0, σ2) error term.  Since positions occur 
exactly once in each block and once with each treatment, positions are orthogonal to 
blocks and treatments.  The analysis of the Youden square is similar to the analysis of a 
balanced incomplete block design, except that a sum of squares between the position 
totals may also be calculated. 

 

Example of a Youden Square 
An industrial engineer is studying the effect of five illumination levels on the 
occurrence of defects in an assembly operation.  Because time may be a factor in the 
experiment, she has decided to run the experiment in five blocks, where each block is 
a day of the week.  However, the department in which the experiment is conducted has 
four work stations and these stations represent a potential source of variability.  The 
engineer decided to run a Youden square with five rows (days or blocks), four 
columns (work stations), and five treatments (the illumination levels).  The coded data 
are shown in Table 5. 

 
 
 
 
 
 
 



Table 5. The Youden Square Design used in the Example 
 

Work Station Day 
(Block) 1 2 3 4 yi..

Treatment 
totals 

1 A=3 B=1 C=-2 D=0 2 y.1.=12 (A)
2 B=0 C=0 D=-1 E=7 6 y.2.=2 (B) 
3 C=-1 D=0 E=5 A=3 7 y.3.=-4 (C) 
4 D=-1 E=6 A=4 B=0 9 y.4.=-2 (D)
5 E=5 A=2 B=1 C=-1 7 y.5.=23 (E)

y..h 6 9 7 9 y…=31  
 

 
 
Considering this design as a balanced incomplete block, we find a = b = 5, r= k = 4, and 
k = 3. Also, 
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Q1 = 12 - 1

4
(2  +  7  +  9 +  7) =  23/4 

 
Q2 = 2 - 1

4
(2 + 6 + 9 + 7) = - 16/4 

 
Q3 = - 4 - 1

4
(2 + 6 + 7 + 7) =  -38/4 

 
Q4 = -2 - 1

4
(2 + 6 + 7 + 9) =  - 32/4 

 
Q5 =23 - 1

4
(6 + 7 + 9 + 7) = 63/4 
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Also, 
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and 
 
SSE = SST - SSTreatments (adjusted) - SSDays - SSStations 

          = 134.95 - 120.37 - 6.70 - 1.35 = 6.53 
 
 
 
Block or day effects may be assessed by computing the adjusted sum of squares for 
blocks.  This yields 
 
Q1' =  2 - 1

4
(12 + 2 - 4 - 2) = 0/4 

 
Q2' =  6 - 1

4
(2 - 3 - 2 + 23) = 5/4 

 
Q3' =  7 - 1

4
(12 - 4 - 2 + 23) = - 1/4 

 
Q4' =  9 - 1

4
(12 + 2 - 2 + 23) = 1/4 

 
Q5' =  7 - 1

4
(12 + 2 - 4 + 23) = -5/4 
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The complete analysis of variance is shown in Table 6.  Illumination levels are 
significantly different at 1 percent. 
 
 
 



Table 6   Analysis of Variance for the Youden Square Example 
Source of Variation Sum of  

Squares 
Degrees of 
Freedom 

Mean 
Square 

 
F0

Illumination level, 
adjusted 

120.37 4 30.09 36.87a

Days, unadjusted 6.70 4 -  
Days, adjusted (0.87) (4) 0.22  
Work Station 1.35 3 0.45  
Error 6.53 8 0.82  
Total 134.95 19   
a Significant at 1 percent. 
 
 
 
S4-4.  Lattice Designs 
Consider a balanced incomplete block design with k2 treatments arranged in b = k(k + 1) 
blocks with k runs per block and r = k + 1 replicates.  Such a design is called a balanced 
lattice.  An example is shown in Table 7 for k2=9 treatments in 12 blocks of 3 runs each.  
Notice that the blocks can be grouped into sets such that each set contains a complete 
replicate.  The analysis of variance for the balanced lattice design proceeds like that for a 
balanced incomplete block design, except that a sum of squares for replicates is computed 
and removed from the sum of squares for blocks.  Replicates will have k degrees of 
freedom and blocks will have k2-1 degrees of freedom. 

Lattice designs are frequently used in situations where there are a large number of 
treatment combinations.  In order to reduce the size of the design, the experimenter may 
resort to partially balanced lattices.  We very briefly describe some of these designs.  
Two replicates of a design for k2 treatments in 2k blocks of k runs are called a simple 
lattice.  For example, consider the first two replicates of the design in Table 7. The 
partial balance is easily seen, since, for example, treatment 2 appears in the same block 
with treatments 1, 3, 5, and 8, but does not appear at all with treatments 4, 6, 7, and 9. A 
lattice design with k2 treatments in 3k blocks grouped into three replicates is called a 
triple lattice.  An example would be the first three replicates in Table 7. A lattice design 
for k2 treatments in 4k blocks arranged in four replicates is called a quadruple lattice. 

 
 

Table 7.   A 3 x 3 Balanced Lattice Design 
Block Replicate 1 Block Replicate 3 

1 1 2 3 7 1 5 9 
2 4 5 6 8 7 2 6 
3 7 8 9 9 4 8 3 

Block Replicate 2 Block Replicate 4 
1 1 4 7 10 1 8 6 
2 2 5 8 11 4 2 9 
3 3 6 9 12 7 5 3 

 



There are other types of lattice designs that occasionally prove useful.  For example, the 
cubic lattice design can be used for k3 treatments in k2 blocks of k runs.  A lattice design 
for k(k + 1) treatments in k + 1 blocks of size k is called a rectangular lattice.  Details of 
the analysis of lattice designs and tables of plans are given in Cochran and Cox (1957). 
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