
Chapter 9.  Supplemental Text Material 
 

S9-1.  Yates's Algorithm for the 3k Design 
Computer methods are used almost exclusively for the analysis of factorial and fractional 
designs.  However, Yates's algorithm can be modified for use in the 3k factorial design.  
We will illustrate the procedure using the data in Example 5-1.  The data for this example 
are originally given in Table 5-1.  This is a 32 design used to investigate the effect of 
material type (A) and temperature (B) on the life of a battery.  There are n = 4 replicates. 

The Yates’ procedure is displayed in Table 1 below.  The treatment combinations are 
written down in standard order; that is, the factors are introduced one at a time, each level 
being combined successively with every set of factor levels above it in the table. (The 
standard order for a 33 design would be 000, 100, 200, 010, 110, 210, 020, 120, 220, 001, 
. . . ).  The Response column contains the total of all observations taken under the 
corresponding treatment combination.  The entries in column (1) are computed as 
follows.  The first third of the column consists of the sums of each of the three sets of 
three values in the Response column.  The second third of the column is the third minus 
the first observation in the same set of three.  This operation computes the linear 
component of the effect.  The last third of the column is obtained by taking the sum of the 
first and third value minus twice the second in each set of three observations.  This 
computes the quadratic component.  For example, in column (1), the second, fifth, and 
eighth entries are 229 + 479 + 583 = 1291, -229 + 583 = 354, and 229 - (2)(479) + 583 = 
-146, respectively.  Column (2) is obtained similarly from column (1).  In general, k 
columns must be constructed. 

The Effects column is determined by converting the treatment combinations at the left of 
the row into corresponding effects.  That is, 10 represents the linear effect of A, AL, and 
11 represents the ABLXL component of the AB interaction.  The entries in the Divisor 
column are found from 
 

2r3tn 
 

where r is the number of factors in the effect considered, t is the number of factors in the 
experiment minus the number of linear terms in this effect, and n is the number of 
replicates.  For example, BL has the divisor 21 x 31 x 4= 24. 

The sums of squares are obtained by squaring the element in column (2) and dividing by 
the corresponding entry in the Divisor column.  The Sum of Squares column now 
contains all of the required quantities to construct an analysis of variance table if both of 
the design factors A and B are quantitative.  However, in this example, factor A (material 
type) is qualitative; thus, the linear and quadratic partitioning of A is not appropriate.  
Individual observations are used to compute the total sum of squares, and the error sum 
of squares is obtained by subtraction. 
 

 
 
 
 



Table 1.    Yates's Algorithm for the 32 Design in Example 5-1 
Treatment 

Combination Response (1) (2) Effects Divisor Sum of Squares 

00 539 1738 3799   

10 623 1291 503 AL 2 3 41 1× ×  10, 542.04

20 576 770 -101 AQ 2 3 41 2× ×  141.68

01 229 37 -968 BL 2 3 41 1× ×  39,042.66

11 479 354 75 ABLXL 2 3 42 0× ×  351.56

21 583 112 307 ABQXL 2 3 42 1× ×  1,963.52

02 230 -131 -74 BQ 2 3 41 2× ×  76.96

12 198 -146 -559 ABLXQ 2 3 42 1× ×  6,510.02

22 342 176 337 ABQXQ 2 3 42 2× ×  788.67

  

 
The analysis of variance is summarized in Table 2.  This is essentially the same results 
that were obtained by conventional analysis of variance methods in Example 5-1.  

 

Table 2.      Analysis of Variance for the 32 Design in Example 5-1 
Source of 
Variation 

Sum of Squares Degrees of 
Freedom 

Mean Square F0 P-value 

A = AL × AQ 10, 683.72 2 5,341.86 7.91 0.0020 
B, Temperature 39,118.72 2 19,558.36 28.97 <0.0001 
BL (39, 042.67) (1) 39,042.67 57.82 <0.0001 
BQ (76.05) (1) 76.05 0.12 0.7314 
AB 9,613.78 4 2,403.44 3.576 0.0186 
A × BL = 
ABLXL + 
ABQXL

(2,315.08) (2) 1,157.54 1.71 0.1999 

A × BQ = 
ABLXQ + 
ABQXQ

(7,298.70) (2) 3,649.75 5.41 0.0106 

Error 18,230.75 27 675.21   
Total 77,646.97 35    
 

 



S9-2.  Aliasing in Three-Level and Mixed-Level Designs 
In the supplemental text material for Chapter 8 (Section 8-2) we gave a general method 
for finding the alias relationships for a fractional factorial design. Fortunately, there is a 
general method available that works satisfactorily in many situations.  The method uses 
the polynomial or regression model representation of the model,

y X= +1 1β ε  

where y is an n × 1 vector of the responses, X1 is an n × p1 matrix containing the design 
matrix expanded to the form of the model that the experimenter is fitting, β1 is an p1 × 1 
vector of the model parameters, and ε is an n × 1 vector of errors.  The least squares 
estimate of β1 is 
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The true model is assumed to be 

y X X= + +1 1 2 2β β ε  

where X2 is an n × p2 matrix containing additional variables not in the fitted model and β2 
is a  p2× 1 vector of the parameters associated with these additional variables.  The 
parameter estimates in the fitted model are not unbiased, since  
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The matrix A X  is called the alias matrix.  The elements of this matrix 
identify the alias relationships for the parameters in the vector β

X X X= ′ ′−( )1 1
1

1 2

1. 

This procedure can be used to find the alias relationships in three-level and mixed-level 
designs.  We now present two examples. 

Example 1 
Suppose that we have conducted an experiment using a 32 design, and that we are 
interested in fitting the following model: 

y x x x x x x x x= + + + + − + − +β β β β β β0 1 1 2 2 12 1 2 11 1
2
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This is a complete quadratic polynomial.  The pure second-order terms are written in a 
form that orthogonalizes these terms with the intercept. We will find the aliases in the 
parameter estimates if the true model is a reduced cubic, say 
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Now in the notation used above, the vector β1 and the matrix 1X are defined as follows:  
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and the other quantities we require are 

X X2 2

111

222

122

1 2

1 1 1
1 0 0
1 1 1

0 1 0
0 0 0
0 1 0
1 1 1
1 0 0
1 1 1

0 0 0
6 0 4
0 6 0
0 0 0
0 0 0
0 0 0

=

− − −
−
− −

−

−

L

N

MMMMMMMMMMMM

O

Q

PPPPPPPPPPPP

=
L

N
MMM

O

Q
PPP

′ =

L

N

MMMMMMM

O

Q

PPPPPPP

, ,    and  β
β
β
β

X  

The expected value of the fitted model parameters is  
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The alias matrix turns out to be  
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This leads to the following alias relationships: 
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Example 2 
This procedure is very useful when the design is a mixed-level fractional factorial.  For 
example, consider the mixed-level design in Table 9-10 of the textbook.  This design can 
accommodate four two-level factors and a single three-level factor.  The resulting 
resolution III fractional factorial is shown in Table 3. 

Since the design is resolution III, the appropriate model contains the main effects 

y x x x x x x x= + + + + + + − +β β β β β β β0 1 1 2 2 3 3 4 4 5 5 55 5
2

5
2( ) ε , 

where the model terms  

β β5 5 55 5
2

5
2x x and ( )− x  

represent the linear and quadratic effects of the three-level factor x5.    The quadratic 
effect of x5 is defined so that it will be orthogonal to the intercept term in the model. 

 



Table 3.  A Mixed-Level Resolution III Fractional Factorial 

x1 x2 x3 x4 x5

-1 1 1 -1 -1 

1 -1 -1 1 -1 

-1 -1 1 1 0 

1 1 -1 -1 0 

-1 1 -1 1 0 

1 -1 1 -1 0 

-1 -1 -1 -1 1 

1 1 1 1 1 

 

 

Now suppose that the true model has interaction: 
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So in the true model the two-level factors x1 and x2 interact, and x1 interacts with both the 
linear and quadratic effects of the three-level factor x5.  Straightforward, but tedious 
application of the procedure described above leads to the alias matrix 
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and the alias relationships are computed from 
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This results in  
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The linear and quadratic components of the interaction between x1 and x5 are aliased with 
the main effects of , and the  interaction aliases the linear component 
of the main effect of x

x x x2 3 4, ,  and x x1 2

5. 
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