
Chapter 11.  Supplemental Text Material 
 

S11-1.  The Method of Steepest Ascent 
The method of steepest ascent can be derived as follows.  Suppose that we have fit a first-
order model 
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and we wish to use this model to determine a path leading from the center of the design 
region x = 0 that increases the predicted response most quickly.  Since the first–order 
model is an unbounded function, we cannot just find the values of the x’s that maximize 
the predicted response.  Suppose that instead we find the x’s that maximize the predicted 
response at a point on a hypersphere of radius r.  That is 
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The can be formulated as  

Max  G x xi
i

k

i i
i

k

= + − − rL
NM

O
QP= =

∑ ∑β β λ0
1

2

1

2  

where λ is a LaGrange multiplier.  Taking the derivatives of G yields 
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Equating these derivatives to zero results in  
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Now the first of these equations shows that the coordinates of the point on the 
hypersphere are proportional to the signs and magnitudes of the regression coefficients 
(the quantity 2λ is a constant that just fixes the radius of the hypersphere).  The second 
equation just states that the point satisfies the constraint.  Therefore, the heuristic 
description of the method of steepest ascent can be justified from a more formal 
perspective. 



  

S11-2.  The Canonical Form of the Second-Order Response Surface Model 
Equation (11-9) presents a very useful result, the canonical form of the second-order 
response surface model.  We state that this form of the model is produced as a result of a 
translation of the original coded variable axes followed by rotation of these axes.  It is 
easy to demonstrate that this is true. 

Write the second-order model as 

y = + ′ + ′β β0 x x Bx  

Now translate the coded design variable axes x to a new center, the stationary point, by 
making the substitution z = x – xs.  This translation produces 
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because from Equation (11-7) we have 2 .  Now rotate these new axes (z) so 
that they are parallel to the principal axes of the contour system. The new variables are 

, where  
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The diagonal matrix Λ has the eigenvalues of B, λ λ λ1 2, , , k on the main diagonal and 
M is a matrix of normalized eigenvectors. Therefore,  
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which is Equation (11-9). 

 

S11-3.  Center Points in the Central Composite Design 
In section 11-4,2 we discuss designs for fitting the second-order model.  The CCD is a 
very important second-order design.  We have given some recommendations regarding 
the number of center runs for the CCD; namely, 3 5≤ ≤nc generally gives good results. 

The center runs serves to stabilize the prediction variance, making it nearly constant over 
a broad region near the center of the design space.  To illustrate, suppose that we are 
considering a CCD in k = 2 variables but we only plan to run nc = 2 center runs.  The 
following graph of the standardized standard deviation of the predicted response was 
obtained from Design-Expert: 
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Notice that the plot of the prediction standard deviation has a large “bump” in the center.  
This indicates that the design will lead to a model that does not predict accurately near 
the center of the region of exploration, a region likely to be of interest to the 
experimenter.  This is the result of using an insufficient number of center runs. 
Suppose that the number of center runs is increased to nc = 4 .  The prediction standard 
deviation plot now looks like this: 
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Notice that the addition of two more center runs has resulted in a much flatter (and hence 
more stable) standard deviation of predicted response over the region of interest. 
The CCD is a spherical design.  Generally, every design on a sphere must have at least 
one center point or the  matrix will be singular.  However, the number of center 
points can often influence other properties of the design, such as prediction variance. 
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S11-4.  Center Runs in the Face-Centered Cube 

The face-centered cube is a CCD with α = 1; consequently, it is a design on a cube, it is 
not a spherical design.  This design can be run with as few as nc = 0 center points.  The 
prediction standard deviation for the case k = 3 is shown below: 
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Notice that despite the absence of center points, the prediction standard deviation is 
relatively constant in the center of the region of exploration.  Note also that the contours 
of constant prediction standard deviation are not concentric circles, because this is not a 
rotatable design.   

While this design will certainly work with no center points, this is usually not a good 
choice.  Two or three center points generally gives good results.  Below is a plot of the 
prediction standard deviation for a face-centered cube with two center points.   This 
choice work very well. 
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S11-5.  A Note on Rotatability 

Rotatability is a property of the prediction variance in a response surface design. If a 
design is rotatable, the prediction variance is constant at all points that are equidistant 
from the center of the design. 

What is not widely known is that rotatability depends on both the design and the model. 
For example, if we have run a rotatable CCD and fit a reduced second-order model, the 
variance contours are no longer spherical.  To illustrate, below we show the standardized 
standard deviation of prediction for a rotatable CCD with k = 2, but we have fit a reduced 
quadratic (one of the pure quadratic terms is missing). 
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Notice that the contours of prediction standard deviation are not circular, even though a 
rotatable design was used. 
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