
Chapter 15.  Supplemental Text Material 

 

S15-1.  The Form of a Transformation 
In Section 3-4.3 of the textbook we introduce transformations as a way to stabilize the 
variance of a response and to (hopefully) induce approximate normality when inequality 
of variance and nonnormality occur jointly (as they often do).  In Section 15-1.1 of the 
book the Box-Cox method is presented as an elegant analytical method for selecting the 
form of a transformation.  However, many experimenters select transformations 
empirically by trying some of the simple power family transformations in Table 3-9 of 
Chapter 3 ( y y, ln( ), / or 1 y , for example) or which appear on the menu of their 
computer software package. 

It is possible to give a theoretical justification of the power family transformations 
presented in Table 3-9.  For example, suppose that y is a response variable with 
mean E y( ) = µ  and variance V y .  That is, the variance of y is a function 
of the mean.  We wish to find a transformation h(y) so that the variance of the 
transformed variable is a constant unrelated to the mean of y.  In other words, 
we want V h  to be a constant that is unrelated to . 
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where R is the remainder in the first-order Taylor series, and we have ignored the 
remainder.  Now the mean of x is 
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and the variance of x is  
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Since , we have  σ 2 = f ( )µ

V x f h( ) ( ) ( )= ′µ µ 2  

We want the variance of x to be a constant, say c2.  So set 
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and solve for , giving ′h y( )
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Thus, the form of the transformation that is required is  
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where k is a constant. 

As an example, suppose that for the response variable y we assumed that the mean and 
variance were equal.  This actually happens in the Poisson distribution.  Therefore,  
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This implies that taking the square root of y will stabilize the variance.  This agrees with 
the advice given in the textbook (and elsewhere) that the square root transformation is 
very useful for stabilizing the variance in Poisson data or in general for count data where 
the mean and variance are not too different. 

As a second example, suppose that the square root of the mean is approximately equal to 
the variance; that is, . Essentially, this says that  µ σ1 2 2/ =

µ σ= =2 2 2  which implies that  f t t( )  
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This implies that for a positive response where  the log of the response is an 
appropriate variance-stabilizing transformation. 
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S15-2.  Selecting λ in the Box-Cox Method 

In Section 15-1.1 of the Textbook we present the Box-Cox method for analytically 
selecting a response variable transformation, and observe that its theoretical basis is the 
method of maximum likelihood.  In applying this method, we are essentially maximizing  
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or equivalently, we are minimizing the error sum of squares with respect to λ.  An 
approximate 100(1-α) percent confidence interval for λ consists of those values of λ that 
satisfy the inequality 
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where n is the sample size and is the upper α percentage point of the chi-square 
distribution with one degree of freedom. To actually construct the confidence interval we 
would draw on a plot of a horizontal line at height  
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on the vertical scale.  This would cut the curve of at two points, and the locations 
of these two points on the λ axis define the two end points of the approximate confidence 
interval for λ.  If we are minimizing the residual or error sum of squares (which is 
identical to maximizing the likelihood) and plotting 

L( )λ  

SSE ( )λ λ versus , then the line must 
be plotted at height 
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Remember that is the value of λ that minimizes the error sum of squares. λ

Equation (14-20 in the textbook looks slightly different than the equation for SS* above.  
The term  has been replaced by 1 , where v is the number of 

degrees of freedom for error.  Some authors use 1  instead, or 

sometimes 1 1 .  These are all based on the 

expansion of , and the fact that ,  

exp( / ),χα 1
2 n 2

2+ ( ) // ,t vα v

α v

nα

x 2

12
2

2
2+ +( ) / ( ) // , /χα v v z or 

12
2

2
2

2
2+ + +( ) / ( ) / ( ) // , / , /t n n zn nα αχ or  or 

exp( ) / ! / !x x x x= + + + + ≈ +1 2 3 12 3 χ1
2 2= ≈z tv

unless the number of degrees of freedom v is too small.  It is perhaps debatable whether 
we should use n or v, but in most practical cases, there will be little difference in the 
confidence intervals that result. 

 

S15-3.  Generalized Linear Models 
Section 15-1.2 considers an alternative approach to data transformation when the “usual” 
assumptions of normality and constant variance are not satisfied.  This approach is based 



on the generalized linear model or GLM.  Examples 15-2, 15-3, and 15-4 illustrated the 
applicability of the GLM to designed experiments. 

The GLM is a unification of nonlinear regression models and nonnormal response 
variable distributions, where the response distribution is a member of the exponential 
family, which includes the normal, Poisson, binomial, exponential and gamma 
distributions as members.  Furthermore, the normal-theory linear model is just a special 
case of the GLM, so in many ways, the GLM is a unifying approach to empirical 
modeling and data analysis. 

We begin our presentation of these models by considering the case of logistic regression.  
This is a situation where the response variable has only two possible outcomes, 
generically called “success” and “failure” and denoted by 0 and 1.  Notice that the 
response is essentially qualitative, since the designation “success” or “failure” is entirely 
arbitrary.  Then we consider the situation where the response variable us a count, such as 
the number of defects in a unit of product (as in the grille defects of Example 14-2), or 
the number of relatively rare events such as the number of Atlantic hurricanes than make 
landfall on the United States in a year.  Finally, we briefly show how all these situations 
are unified by the GLM. 

S15-3.1.   Models with a Binary Response Variable 
Consider the situation where the response variable from an experiment takes on only two 
possible values, 0 and 1.  These could be arbitrary assignments resulting from observing a 
qualitative response.  For example, the response could be the outcome of a functional 
electrical test on a semiconductor device for which the results are either a “success”, 
which means the device works properly, or a “failure”, which could be due to a short, an 
open, or some other functional problem.   

Suppose that the model has the form 
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where ′ = ′ = ′x xi i i ik kx x x[ , , , , ] [ , , , , ]1 1 2 0 1 2,   ,  iβ β β β β β  is called the linear predictor, 
and the response variable yi takes on the values either 0 or 1. We will assume that the 
response variable yi is a Bernoulli random variable with probability distribution as 
follows: 
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Now since E i( )ε = 0 , the expected value of the response variable is  
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This implies that  

E yi i( ) i= ′ =x β π  

This means that the expected response given by the response function E yi i( ) = ′x β  is just 
the probability that the response variable takes on the value 1.   

There are some substantive problems with this model.  First, note that if the response is 
binary, then the error term ε i  can only take on two values, namely 

ε β
ε β

i i i

i i i

y
y

= − ′ =
= − ′ =

1 1
0

x
x

  when 
  when 

 

Consequently, the errors in this model cannot possibly be normal.  Second, the error 
variance is not constant, since 
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Notice that this last expression is just  
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since E yi i( ) = ′ =x β π .  This indicates that the variance of the observations (which is the 
same as the variance of the errors because ε π πi i iy i= − ,  and is a constant) is a function 
of the mean.  Finally, there is a constraint on the response function, because  

0 1≤ = ≤E yi i( ) π  

This restriction causes serious problems with the choice of a linear response function, as 
we have initially assumed. 

Generally, when the response variable is binary, there is considerable evidence indicating 
that the shape of the response function should be nonlinear.  A monotonically increasing 
(or decreasing) S-shaped (or reverse S-shaped) function is usually employed.  This 
function is called the logistic response function, and has the form 
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or equivalently,  
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The logistic response function can be easily linearized.  Let E y( ) = π and make the 
transformation 
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Then in terms of our linear predictor ′x β  we have  

η β= ′x  

This transformation is often called the logit transformation of the probability π, and the 
ratio π/(1-π) in the transformation is called the odds.  Sometimes the logit transformation 
is called the log-odds.   

There are other functions that have the same shape as the logistic function, and they can 
also be obtained by transforming π.  One of these is the probit transformation, obtained 
by transforming π using the cumulative normal distribution.  This produces a probit 
regression model.  The probit regression model is less flexible than the logistic regression 
model because it cannot easily incorporate more than one predictor variable.  Another 
possible transformation is the complimentary log-log transformation of π, given by 
ln[ ln( )]− −1 π .  This results in a response function that is not symmetric about the value 
π = 0.5. 

S15-3.2.  Estimating the Parameters in a Logistic Regression Model 
The general form of the logistic regression model is 

y E yi i i= +( ) ε  

where the observations yi  are independent Bernoulli random variables with expected 
values 
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We will use the method of maximum likelihood to estimate the parameters in the linear 
predictor ′xiβ .   

Each sample observation follows the Bernoulli distribution, so the probability distribution 
of each sample observation is  
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i
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and of course each observation yi takes on the value 0 or 1.  Since the observations are 
independent, the likelihood function is just  
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It is more convenient to work with the log-likelihood 
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Now since 1 , the log-likelihood can 
be written as  
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Often in logistic regression models we have repeated observations or trials at each level 
of the x variables.  This happens frequently in designed experiments. Let yi represent the 
number of 1’s observed for the ith observation and ni be the number of trials at each 
observation.  Then the log-likelihood becomes 
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Numerical search methods could be used to compute the maximum likelihood estimates 
(or MLEs) .  However, it turns out that we can use iteratively reweighted least squares 
(IRLS) to actually find the MLEs.  To see this recall that the MLEs are the solutions to  
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Putting this all together gives 
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Therefore, the maximum likelihood estimator solves 

′ − =X y 0( )µ  

where ′ = ′ =y [ , , , ] [ , ,y y y n n nn1 2 1 1 2 2 and ]n nµ π π π .  This set of equations is often 
called the maximum likelihood score equations.  They are actually the same form of the 
normal equations that we have seen previously for linear least squares, because in the 
linear regression model, E( )y X= =β µ and the normal equations are 
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which can be written as  
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The Newton-Raphson method is actually used to solve the score equations.  This 
procedure observes that in the neighborhood of the solution, we can use a first-order 
Taylor series expansion to form the approximation 
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Therefore, we can rewrite (1) above as  
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we can write  
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Consequently,  
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and we may rewrite the score equations as  

1 0
1 V ii

n

i i( )
( )*

η
η η

L
NM
O
QP − =

=
∑  

or in matrix notation, 

′ − =−X V 01( )*η η  



where V is a diagonal matrix of the weights formed from the variances of the ηi .  
Because η β= X  we may write the score equations as  
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and the maximum likelihood estimate of β  is 
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So V is the diagonal matrix of weights formed from the variances of the random part of z. 

Thus the IRLS algorithm based on the Newton-Raphson method can be described as 
follows: 

1. Use ordinary least squares to obtain an initial estimate of ; β β,  say 0

2. Use ; β π0 to estimate  and V



3. Let η β ; 0 0= X

4. Base z1 on η0 ; 

5. Obtain a new estimate  iterate until some suitable convergence criterion is 
satisfied. 

,β1  and

 

If  is the final value that the above algorithm produces and if the model assumptions 
are correct, then we can show that asymptotically 
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The fitted value of the logistic regression model is often written as  
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S15-3.3.  Interpreting the Parameters in a Logistic Regression Model 
It is relatively easy to interpret the parameters in a logistic regression model.  Consider 
first the case where the linear predictor has only a single predictor, so that the fitted value 
of the model at a particular value of x, say xi, is 

( )η β βx xi i= +0 1  

The fitted value at xi + 1 is  

( ) ( )η β βx xi i+ = + +1 10 1  

and the difference in the two predicted values is  
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Now ( )η xi is just the log-odds when the regressor variable is equal to xi, and ( )η xi +1 is 
just the log-odds when the regressor is equal to xi +1.  Therefore, the difference in the two 
fitted values is  
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If we take antilogs, we obtain the odds ratio 
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The odds ratio can be interpreted as the estimated increase in the probability of success 
associated with a one-unit change in the value of the predictor variable.  In general, the 
estimated increase in the odds ratio associated with a change of d units in the predictor 
variable is .   exp( )dβ1

The interpretation of the regression coefficients in the multiple logistic regression model 
is similar to that for the case where the linear predictor contains only one regressor.  That 
is, the quantity ex  is the odds ratio for regressor xp( )β j j, assuming that all other 
predictor variables are constant. 

 

S15-3.4.  Hypothesis Tests on Model Parameters 
Hypothesis testing in the GLM is based on the general method of likelihood ratio tests.  
It is a large-sample procedure, so the test procedures rely on asymptotic theory.  The 
likelihood ratio approach leads to a statistic called deviance. 

Model Deviance 
The deviance of a model compares the log-likelihood of the fitted model of interest to the 
log-likelihood of a saturated model; that is, a model that has exactly n parameters and 
which fits the sample data perfectly.  For the logistic regression model, this means that 
the probabilities π i are completely unrestricted, so setting π i yi= (recall that yi = 0 or 1) 
would maximize the likelihood.  It can be shown that this results in a maximum value of 
the likelihood function for the saturated model of unity, so the maximum value of the log- 
likelihood function is zero.   

Now consider the log- likelihood function for the fitted logistic regression model.  When 
the maximum likelihood estimates  are used in the log- likelihood function, it attains its 
maximum value, which is 
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The value of the log-likelihood function for the fitted model can never exceed the value 
of the log-likelihood function for the saturated model, because the fitted model contains 
fewer parameters.  The deviance compares the log-likelihood of the saturated model with 
the log-likelihood of the fitted model. Specifically, model deviance is defined as 
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where  denotes the log of the likelihood function.  Now if the logistic regression model 
is the correct regression function and the sample size n is large, the model deviance has 
an approximate chi-square distribution with n – p degrees of freedom.  Large values of 



the model deviance would indicate that the model is not correct, while a small value of 
model deviance implies that the fitted model (which has fewer parameters than the 
saturated model) fits the data almost as well as the saturated model.  The formal test 
criteria would be as follows: 

if   conclude that the fitted model is adequate

if   conclude that the fitted model is not adequate
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The deviance is related to a very familiar quantity.  If we consider the standard normal-
theory linear regression model, the deviance turns out to be the error or residual sum of 
squares divided by the error variance . σ 2

Testing Hypotheses on Subsets of Parameters using Deviance
We can also use the deviance to test hypotheses on subsets of the model parameters, just 
as we used the difference in regression (or error) sums of squares to test hypotheses in the 
normal-error linear regression model case.  Recall that the model can be written as  
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where the full model has p parameters, β1  contains p – r of these parameters, β 2 contains 
r of these parameters, and the columns of the matrices X1 and X2 contain the variables 
associated with these parameters.  Suppose that we wish to test the hypotheses 
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Therefore, the reduced model is  

η β= X1 1  

Now fit the reduced model, and let λ β( )1  be the deviance for the reduced model.  The 
deviance for the reduced model will always be larger than the deviance for the full model, 
because the reduced model contains fewer parameters.  However, if the deviance for the 
reduced model is not much larger than the deviance for the full model, it indicates that 
the reduced model is about as good a fit as the full model, so it is likely that the 
parameters in β 2 are equal to zero.  That is, we cannot reject the null hypothesis above.  
However, if the difference in deviance is large, at least one of the parameters inβ 2 is 
likely not zero, and we should reject the null hypothesis.  Formally, the difference in 
deviance is  

λ β β λ β λ β( | ) ( ) ( )2 1 1= −  

and this quantity has n p r n p r− − − − =( ) ( )  degrees of freedom.  If the null hypothesis 
is true and if n is large, the difference in deviance has a chi-square distribution with r 
degrees of freedom.  Therefore, the test statistic and decision criteria are 
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Sometimes the difference in devianceλ β β( | )2 1  is called the partial deviance.  It is a 

likelihood ratio test.  To see this, let  be the maximum value of the likelihood 

function for the full model, and  be the maximum value of the likelihood function 
for the reduced model. The likelihood ratio is  
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The test statistic for the likelihood ratio test is equal to minus two times the log-
likelihood ratio, or 
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However, this is exactly the same as the difference in deviance.  To see this, substitute 
from the definition of the deviance from equation (3) and note that the log-likelihoods for 
the saturated model cancel out. 

Tests on Individual Model Coefficients 
Tests on individual model coefficients, such as  
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can be conducted by using the difference in deviance method described above.  There is 
another approach, also based on the theory of maximum likelihood estimators.  For large 
samples, the distribution of a maximum likelihood estimator is approximately normal 
with little or no bias.  Furthermore, the variances and covariances of a set of maximum 
likelihood estimators can be found from the second partial derivatives of the log-
likelihood function with respect to the model parameters, evaluated at the maximum 
likelihood estimates.  Then a t-like statistic can be constructed to test the above 
hypothesis.  This is sometimes referred to as Wald inference.   

Let G denote the p p× matrix of second partial derivatives of the log-likelihood function; 
that is  

G i jij
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=
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G is called the Hessian matrix.  If the elements of the Hessian are evaluated at the 
maximum likelihood estimators , the large-sample approximate covariance matrix 
of the regression coefficients is  

β β=



V ( ) ( )β β≡ = − −Σ G 1  

The square roots of the diagonal elements of this matrix are the large-sample standard 
errors of the regression coefficients, so the test statistic for the null hypothesis in 
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The reference distribution for this statistic is the standard normal distribution.  Some 
computer packages square the Z0 statistic and compare it to a chi-square distribution with 
one degree of freedom.  It is also straightforward to use Wald inference to construct 
confidence intervals on individual regression coefficients. 

 

S15-3.5.  Poisson Regression 
We now consider another regression modeling scenario where the response variable of 
interest is not normally distributed.   In this situation the response variable represents a 
count of some relatively rare event, such as defects in a unit of manufactured product, 
errors or “bugs” in software, or a count of particulate matter or other pollutants in the 
environment.  The analyst is interested in modeling the relationship between the observed 
counts and potentially useful regressor or predictor variables.  For example, an engineer 
could be interested in modeling the relationship between the observed number of defects 
in a unit of product and production conditions when the unit was actually manufactured. 

We assume that the response variable yi is a count, such that the observation .  
A reasonable probability model for count data is often the Poisson distribution 

yi = 0 1, , ,

f y e
y

y
y
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!

, , ,= =
−µµ 0 1  

where the parameter µ > 0 .  The Poison is another example of a probability distribution 
where the mean and variance are related.  In fact, for the Poisson distribution it is 
straightforward to show that  

E y V y( ) ( )= =µ µ and  

That is, both the mean and variance of the Poisson distribution are equal to the parameter 
µ.  

The Poisson regression model can be written as  

y E y ii i i n= + =( ) , , , ,ε 1 2  

We assume that the expected value of the observed response can be written as  



E yi i( ) = µ  

and that there is a function g that relates the mean of the response to a linear predictor, 
say 

g xi k
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The function g is usually called the link function.  The relationship between the mean 
and the linear predictor is  

µ βi ig= ′−1( )x  

There are several link functions that are commonly used with the Poisson distribution.  
One of these is the identity link 

g i i i( )µ µ β= = ′x  

When this link is used, E yi i i( ) = = ′µ βx  since .  Another popular 
link function for the Poisson distribution is the log link 

µ βi ig= ′ = ′−1( )x x βi

ig i i( ) ln( )µ µ β= = ′x  

For the log link, the relationship between the mean of the response variable and the linear 
predictor is  
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The log link is particularly attractive for Poisson regression because it ensures that all of 
the predicted values of the response variable will be nonnegative. 

The method of maximum likelihood is used to estimate the parameters in Poisson 
regression.  The development follows closely the approach used for logistic regression.  
If we have a random sample of n observations on the response y and the predictors x, then 
the likelihood function is  
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where .  Once the link function is specified, we maximize the log-
likelihood  

µ i g= ′−1(x βi )
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Iteratively reweighted least squares can be used to find the maximum likelihood estimates 
of the parameters in Poisson regression, following an approach similar to that used for 
logistic regression. Once the parameter estimates  are obtained, the fitted Poisson 
regression model is  

β
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For example, if the identity link is used, the prediction equation becomes 
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and if the log link is specified, then 
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Inference on the model and its parameters follows exactly the same approach as used for 
logistic regression.  That is, model deviance is an overall measure of goodness of fit, and 
tests on subsets of model parameters can be performed using the difference in deviance 
between the full and reduced models.  These are likelihood ratio tests.  Wald inference, 
based on large-sample properties of maximum likelihood estimators, can be used to test 
hypotheses and construct confidence intervals on individual model parameters. 

 

S15-3.6.  The Generalized Linear Model 
All of the regression models that we have considered in this section belong to a family of 
regression models called the generalized linear model, or the GLM.  The GLM is 
actually a unifying approach to regression and experimental design models, uniting the 
usual normal-theory linear regression models and nonlinear models such as logistic and 
Poisson regression.   

A key assumption in the GLM is that the response variable distribution is a member of 
the exponential family of distributions, which includes the normal, binomial, Poisson, 
inverse normal, exponential and gamma distributions.  Distributions that are members of 
the exponential family have the general form 

f y y b a h yi i i i i i( , , ) exp{[ ( )] / ( ) ( , )}θ φ θ θ φ φ= − +  

where φ θ is a scale parameter and i is called the natural location parameter.  For members 
of the exponential family,  
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where var(µ) denotes the dependence of the variance of the response on its mean.  As a 
result, we have 

d
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iθ
µ µ
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1
var( )

 

It is easy to show that the normal, binomial and Poisson distributions are members of the 
exponential family. 

The Normal Distribution 
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Thus for the normal distribution, we have 
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The Binomial Distribution 
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Therefore, for the binomial distribution,  
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We note that 
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We recognize this as the mean of the binomial distribution.  Also,  
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This last expression is just the variance of the binomial distribution. 



The Poisson Distribution 

f y e
y

y y

i i

y

( , , )
!

exp[ ln ln( !)]

θ φ λ

λ λ

λ

=

= − −

−

 

Therefore, for the Poisson distribution, we have 
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However, since 
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the mean of the Poisson distribution is  

E y( ) = ⋅ =1 λ λ  

The variance of the Poisson distribution is 
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S15-3.7.  Link Functions and Linear Predictors 
The basic idea of a GLM is to develop a linear model for an appropriate function of the 
expected value of the response variable.  Let ηi be the linear predictor defined by 

η µ βi i ig E y g i= = = ′[ ( )] ( ) x  

Note that the expected response is just 

E y g gi i( ) ( ) ( )= = ′− −1 1η βxi  

We call the function g the link function.  Recall that we introduced the concept of a link 
function in our description of Poisson regression in Section S15-3.5 above.  There are 
many possible choices of the link function, but if we choose  

η θi i=  

we say that ηi is the canonical link.  Table 1 shows the canonical links for the most 
common choices of distributions employed with the GLM. 

 



Table 1.  Canonical Links for the Generalized Linear Model 

Distribution Canonical Link 

Normal η µi i=  (identity link) 

Binomial 
η π

πi
i

i

=
−
F
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1
  (logistic link) 

Poisson η λi = ln( )   (log link) 

Exponential 
η

λi
i

=
1   (reciprocal link) 

Gamma 
η

λi
i

=
1   (reciprocal link) 

 

There are other link functions that could be used with a GLM, including: 

1. The probit link,  

η i =
−Φ 1[ ( )]E yi  

where Φ represents the cumulative standard normal distribution function. 

2. The complimentary log-log link,  

ηi iE y= −ln{ln[ ( )]}1  

3. The power family link,  
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A very fundamental idea is that there are two components to a GLM; the response 
variable distribution, and the link function.  We can view the selection of the link 
function in a vein similar to the choice of a transformation on the response.   However, 
unlike a transformation, the link function takes advantage of the natural distribution of 
the response.  Just as not using an appropriate transformation can result in problems with 
a fitted linear model, improper choices of the link function can also result in significant 
problems with a GLM. 

S15-3.8.  Parameter Estimation in the GLM 
The method of maximum likelihood is the theoretical basis for parameter estimation in 
the GLM.  However, the actual implementation of maximum likelihood results in an 
algorithm based on iteratively reweighted least squares (IRLS).  This is exactly what we 
saw previously for the special case of logistic regression. 

Consider the method of maximum likelihood applied to the GLM, and suppose we use 
the canonical link.  The log-likelihood function is  
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Consequently, we can find the maximum likelihood estimates of the parameters by 
solving the system of equations 
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In most cases, a( )φ is a constant, so these equations become: 
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This is actually a system of p = k + 1 equations, one for each model parameter.  In matrix 
form, these equations are 

′ − =X y 0( )µ  

where ′ =µ µ µ µ[ , , ,1 2 p ] .  These are called the maximum likelihood score equations, 
and they are just the same equations that we saw previously in the case of logistic 
regression, where ′ =µ π π π[ , ,n n nn n1 1 2 2 ] . 

To solve the score equations, we can use IRLS, just as we did in the case of logistic 
regression.  We start by finding a first-order Taylor series approximation in the 
neighborhood of the solution 
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This expression provides a basis for approximating the variance of ηi . 

In maximum likelihood estimation, we replace ηi by its estimate, ηi .  Then we have 
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For convenience, define , so we have var( ) [var( )]η µi = −1
i

V ai i( ) var( ) ( ).η η φ≈  

Substituting this into Equation (4) above results in  
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If we let V be an n  diagonal matrix whose diagonal elements are the n× var( )ηi , then in 
matrix form, Equation (5) becomes 
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We may then rewrite the score equations as follows: 
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Thus, the maximum likelihood estimate of β  is 

( ) *β η= ′ ′− − −X V X X V1 1 1  



Now just as we saw in the logistic regression situation, we do not know , so we pursue 
an iterative scheme based on  
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Using iteratively reweighted least squares with the Newton-Raphson method, the solution 
is found from 

( )β = ′ ′− − −X V X X V z1 1 1  

Asymptotically, the random component of z comes from the observations yi.  The 
diagonal elements of the matrix V are the variances of the zi’s, apart from a( )φ .   

As an example, consider the logistic regression case: 
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Thus, for logistic regression, the diagonal elements of the matrix V are  
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which is exactly what we obtained previously. 

Therefore, IRLS based on the Newton-Raphson method can be described as follows: 

1. Use ordinary least squares to obtain an initial estimate of ; β β,  say 0

2. Use ; β µ0 to estimate  and V



3. Let η β ; 0 0= X

4. Base z1 on η0 ; 

5. Obtain a new estimate  iterate until some suitable convergence criterion is 
satisfied. 

,β1  and

 

If  is the final value that the above algorithm produces and if the model assumptions, 
including the choice of the link function, are correct, then we can show that 
asymptotically 
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If we don’t use the canonical link, then η θi i≠ , and the appropriate derivative of the log-
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Once again, we can use a Taylor series expansion to obtain 
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Following an argument similar to that employed before,  
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and eventually we can show that 
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Equating this last expression to zero and writing it in matrix form, we obtain 

′ − =−X V 01( )*η η  

or, since η β= X ,  

′ − =−X V X 01( )*η β  

The Newton-Raphson solution is based on  
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where 

z y d
di i i i

i

i

= + −( )η µ η
µ

 

Just as in the case of the canonical link, the matrix V is a diagonal matrix formed from 
the variances of the estimated linear predictors, apart from a( )φ .   

Some important observations about the GLM: 

1. Typically, when experimenters and data analysts use a transformation, they use 
ordinary least squares or OLS to actually fit the model in the transformed scale. 

2. In a GLM, we recognize that the variance of the response is not constant, and we use 
weighted least squares as the basis of parameter estimation. 

3. This suggests that a GLM should outperform standard analyses using transformations 
when a problem remains with constant variance after taking the transformation. 

4. All of the inference we described previously on logistic regression carries over 
directly to the GLM.  That is, model deviance can be used to test for overall model fit, 
and the difference in deviance between a full and a reduced model can be used to test 
hypotheses about subsets of parameters in the model.  Wald inference can be applied 
to test hypotheses and construct confidence intervals about individual model 
parameters. 

 

S15-3.9.  Prediction and Estimation with the GLM 
For any generalized linear model, the estimate of the mean response at some point of 
interest, say x0, is  

( )y g0 0
1

0= = ′−µ βx  

where g is the link function and it is understood that x0 may be expanded to “model 
form” if necessary to accommodate terms such as interactions that may have been 
included in the linear predictor.  An approximate confidence interval on the mean 
response at this point can be computed as follows.  The variance of the linear predictor 
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This method is used to compute the confidence intervals on the mean response reported 
in SAS PROC GENMOD.  This method for finding the confidence intervals usually 
works well in practice, because  is a maximum likelihood estimate, and therefore any 

function of  is also a maximum likelihood estimate.  The above procedure simply 
constructs a confidence interval in the space defined by the linear predictor and then 
transforms that interval back to the original metric. 

β

β

It is also possible to use Wald inference to derive approximate confidence intervals on the 
mean response.  Refer to Myers and Montgomery (1997) for the details. 

 

S15-3.10.  Residual Analysis in the GLM 
Just as in any model-fitting procedure, analysis of residuals is important in fitting the 
GLM.  Residuals can provide guidance concerning the overall adequacy of the model, 
assist in verifying assumptions, and give an indication concerning the appropriateness of 
the selected link function. 

The ordinary or raw residuals from the GLM are just the differences between the 
observations and the fitted values,  

e y y
y

i i

i i

= −

= − µ
 

It is generally recommended that residual analysis in the GLM be performed using 
deviance residuals.  The ith deviance residual is defined as the square root of the 
contribution of the ith observation to the deviance, multiplied by the sign of the raw 
residual, or 

r d sign y yDi i i i= −( )  

where di is the contribution of the ith observation to the deviance.  For the case of logistic 
regression (a GLM with binomial errors and the logit link), we can show that  
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Note that as the fit of the model to the data becomes better, we would find that 
/π i iy n≅ i , and the deviance residuals will become smaller, close to zero.  For Poisson 

regression with a log link, we have 

d y y
e

y e i ni i
i

i
i

i= F
HG
I
KJ − − =

′

′ln ( ), , , ,
x

x
β

β 1 2  

Once again, notice that as the observed value of the response yi and the predicted value 
 become closer to each other, the deviance residuals approach zero.   y ei

i= ′x β

Generally, deviance residuals behave much like ordinary residuals do in a standard 
normal theory linear regression model. Thus plotting the deviance residuals on a normal 
probability scale and versus fitted values are logical diagnostics.  When plotting deviance 
residuals versus fitted values, it is customary to transform the fitted values to a constant 
information scale.  Thus,  

1. for normal responses, use  yi

2. for binomial responses, use 2 1sin− π i  

3. for Poisson responses, use 2 yi  

4. for gamma responses, use  2 ln( )yi

 

S15-4.  Unbalanced Data in a Factorial Design 
In this chapter we have discussed several approximate methods for analyzing a factorial 
experiment with unbalanced data.  The approximate methods are often quite satisfactory, 
but as we observed, exact analysis procedure are available.  These exact analyses often 
utilize the connection between ANOVA and regression.  We have discussed this 
connection previously, and the reader may find it helpful to review Chapters 3 and 5, as 
well as the Supplemental Text Material for these chapters.  

We will use a modified version of the battery life experiment of Example 5-1 to illustrate 
the analysis of data from an unbalanced factorial.  Recall that there are three material 
types of interest (factor A) and three temperatures (factor B), and the response variable of 
interest is battery life.  Table 2 presents the modified data.  Notice that we have 
eliminated certain observations from the original experimental results; the smallest 
observed responses for material type 1 at each of the three temperatures, and one 
(randomly selected) observation from each of two other cells.   

S15-4.1.  The Regression Model Approach 
One approach to the analysis simply formulates the ANOVA model as a regression 
model and uses the general regression significance test (or the “extra sum of squares 
method’ to perform the analysis.  This approach is easy to apply when the unbalanced 
design has all cells filled; that is, there is at least one observation in each cell. 

 



 

Table 2. Modified Data from Example 5-1  

Temperature Material 
types 15 70 125 

1 130,155, 
180 

40,80,75 70,82,58 

2 150,188, 
159,126 

136,122,   
106,115 

25,70,45 

3 138,110,  
168,160 

120,150, 
139 

96,104,  
82,60 

 

 

Recall that the regression model formulation of an ANOVA model uses indicator 
variables. We will define the indicator variables for the design factors material types and 
temperature as follows: 

 

Material type X1 X2

1 0 0 

2 1 0 

3 0 1 

  

 

Temperature X3 X4

15 0 0 

70 1 0 

125 0 1 

 

The regression model is  

y x x x x
x x x x x x x x

ijk ijk ijk ijk ijk

ijk ijk ijk ijk ijk ijk ijk ijk ijk

= + + + +

+ + + + +

β β β β β

β β β β
0 1 1 2 2 3 3 4 4

5 1 3 6 1 4 7 2 3 8 2 4 ε

n

                (6) 

where i, j =1,2,3 and the number of replicates k ij= 1 2, , , , where nij is the number of 
replicates in the ijth cell. Notice that in our modified version of the battery life data, we 
have  n n n n n nij11 12 13 23 32 3 4= = = = = =,  and all other .   



In this regression model, the terms β β1 1 2x xijk ijk 2+  represent the main effect of factor A 
(material type), and the terms β β3 3 4 4x xijk ijk+  represent the main effect of temperature.  
Each of these two groups of terms contains two regression coefficients, giving two 
degrees of freedom.  The terms β β β β5 1 3 6 1 4 7 2 3 8 2 4x x x x x x x xijk ijk ijk ijk ijk ijk ijk ijk+ + +  represent 
the AB interaction with four degrees of freedom.  Notice that there are four regression 
coefficients in this term. 

Table 3 presents the data from this modified experiment in regression model form.  In 
Table 3, we have shown the indicator variables for each of the 31 trials of this 
experiment. 

Table 3. Modified Data from Example 5-1 in Regression Model Form 

Y X1 X2 X3 X4 X5 X6 X7 X8

130 0 0 0 0 0 0 0 0 
150 1 0 0 0 0 0 0 0 
136 1 0 1 0 1 0 0 0 
25 1 0 0 1 0 1 0 0 
138 0 1 0 0 0 0 0 0 
96 0 1 0 1 0 0 0 1 
155 0 0 0 0 0 0 0 0 
40 0 0 1 0 0 0 0 0 
70 0 0 0 1 0 0 0 0 
188 1 0 0 0 0 0 0 0 
122 1 0 1 0 1 0 0 0 
70 1 0 0 1 0 1 0 0 
110 0 1 0 0 0 0 0 0 
120 0 1 1 0 0 0 1 0 
104 0 1 0 1 0 0 0 1 
80 0 0 1 0 0 0 0 0 
82 0 0 0 1 0 0 0 0 
159 1 0 0 0 0 0 0 0 
106 1 0 1 0 1 0 0 0 
58 0 0 0 1 0 0 0 0 
168 0 1 0 0 0 0 0 0 
150 0 1 1 0 0 0 1 0 
82 0 1 0 1 0 0 0 1 
180 0 0 0 0 0 0 0 0 
75 0 0 1 0 0 0 0 0 
126 1 0 0 0 0 0 0 0 
115 1 0 1 0 1 0 0 0 
45 1 0 0 1 0 1 0 0 
160 0 1 0 0 0 0 0 0 
139 0 1 1 0 0 0 1 0 
60 0 1 0 1 0 0 0 1 

 

 



We will use this data to fit the regression model in Equation (6).  We will find it 
convenient to refer to this model as the full model.  The Minitab output is: 

 
Regression Analysis 
The regression equation is 
Y = 155 + 0.7 X1 - 11.0 X2 - 90.0 X3 - 85.0 X4 + 54.0 X5 - 24.1 X6  
    + 82.3 X7 + 26.5 X8 
 
Predictor        Coef       StDev          T        P 
Constant       155.00       12.03      12.88    0.000 
X1               0.75       15.92       0.05    0.963 
X2             -11.00       15.92      -0.69    0.497 
X3             -90.00       17.01      -5.29    0.000 
X4             -85.00       17.01      -5.00    0.000 
X5              54.00       22.51       2.40    0.025 
X6             -24.08       23.30      -1.03    0.313 
X7              82.33       23.30       3.53    0.002 
X8              26.50       22.51       1.18    0.252 
 
S = 20.84       R-Sq = 83.1%     R-Sq(adj) = 76.9% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         8     46814.0      5851.8     13.48    0.000 
Residual Error    22      9553.8       434.3 
Total             30     56367.9 
 
 
 
We begin by testing the hypotheses associated with interaction.  Specifically, in terms of 
the regression model in Equation (6), we wish to test 

H
H j

0 5 6 7 8

1

0
0 5 6 7

:
: , j 8, , ,
β β β β

β
= = = =

≠ = at least one 
                                         (7)        

We may test this hypothesis by using the general regression significance test or “extra 
sum of squares” method.  If the null hypothesis of no-interaction is true, then the reduced 
model is 

y x x x xijk ijk ijk ijk ijk ijk= + + + + +β β β β β ε0 1 1 2 2 3 3 4 4                              (8) 

Using Minitab to fit the reduced model produces the following: 

Regression Analysis 
The regression equation is 
Y = 138 + 12.5 X1 + 23.9 X2 - 41.9 X3 - 82.1 X4 
 
Predictor        Coef       StDev          T        P 
Constant       138.02       11.02      12.53    0.000 
X1              12.53       11.89       1.05    0.302 
X2              23.92       11.89       2.01    0.055 
X3             -41.91       11.56      -3.62    0.001 
X4             -82.14       11.56      -7.10    0.000 



 

S = 26.43       R-Sq = 67.8%     R-Sq(adj) = 62.8% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         4     38212.5      9553.1     13.68    0.000 
Residual Error    26     18155.3       698.3 
Total             30     56367.9 

 

Now the regression or model sum of squares for the full model, which includes the 
interaction terms, is ( ) 46,814.0ModelSS FM =  and for the reduced model [Equation (8)] it 
is .  Therefore, the increase in the model sum of squares due to 
the interaction terms (or the extra sum of squares due to interaction) is  

( ) 38, 212.5ModelSS RM =

(Interaction|main effects) ( ) ( )
46,814.0 38,212.5
8601.5

Model Model ModelSS SS FM SS RM= −
= −
=

 

Since there are 4 degrees of freedom for interaction, the appropriate test statistic for the 
no-interaction hypotheses in Equation (7) is 

0
(Interaction|main effects) / 4

( )
8601.5 / 4

434.3
4.95

Model

E

SSF
MS FM

=

=

=

 

The P-value for this statistic is approximately 0.0045, so there is evidence of interaction. 

Now suppose that we wish to test for a material type effect.  In terms of the regression 
model in Equation (6), the hypotheses are  

H
H

0 1 2

1 1 2

0
0

:
:
β β
β β

= =
≠ and / or 

                                                   (9) 

and the reduced model is  

y x x
x x x x x x x x

ijk ijk ijk

ijk ijk ijk ijk ijk ijk ijk ijk ijk

= + +

+ + + + +

β β β

β β β β
0 3 3 4 4

5 1 3 6 1 4 7 2 3 8 2 4 ε
                       (10)         

 

Fitting this model produces the following: 

 



Regression Analysis 
The regression equation is 
Y = 151 - 86.3 X3 - 81.3 X4 + 54.8 X5 - 23.3 X6 + 71.3 X7 + 15.5 X8 
 
Predictor        Coef       StDev          T        P 
Constant      151.273       6.120      24.72    0.000 
X3             -86.27       13.22      -6.53    0.000 
X4             -81.27       13.22      -6.15    0.000 
X5              54.75       15.50       3.53    0.002 
X6             -23.33       16.57      -1.41    0.172 
X7              71.33       16.57       4.30    0.000 
X8              15.50       15.50       1.00    0.327 
 
S = 20.30       R-Sq = 82.5%     R-Sq(adj) = 78.1% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         6     46480.6      7746.8     18.80    0.000 
Residual Error    24      9887.3       412.0 
Total             30     56367.9 
 
Therefore, the sum of squares for testing the material types main effect is 

(Material types) ( ) ( )
46,814.0 46, 480.6
333.4

Model Model ModelSS SS FM SS RM= −
= −
=

 

The F-statistic is  

0
(Material types) / 2

( )
333.4 / 2

434.3
0.38

Model

E

SSF
MS FM

=

=

=

 

which is not significant.  The hypotheses for the main effect of temperature is  

H
H

0 3 4

1 3 4

0
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                                                   (11) 

and the reduced model is  

y x x
x x x x x x x x

ijk ijk ijk

ijk ijk ijk ijk ijk ijk ijk ijk ijk

= + +

+ + + + +

β β β

β β β β
0 1 1 2 2

5 1 3 6 1 4 7 2 3 8 2 4 ε
                       (12)         

 

Fitting this model produces: 

 

 



Regression Analysis 
The regression equation is 
Y = 96.7 + 59.1 X1 + 47.3 X2 - 36.0 X5 - 109 X6 - 7.7 X7 - 58.5 X8 
 
Predictor        Coef       StDev          T        P 
Constant        96.67       10.74       9.00    0.000 
X1              59.08       19.36       3.05    0.005 
X2              47.33       19.36       2.45    0.022 
X5             -36.00       22.78      -1.58    0.127 
X6            -109.08       24.60      -4.43    0.000 
X7              -7.67       24.60      -0.31    0.758 
X8             -58.50       22.78      -2.57    0.017 
 
S = 32.21       R-Sq = 55.8%     R-Sq(adj) = 44.8% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         6       31464        5244      5.05    0.002 
Residual Error    24       24904        1038 
Total             30       56368 
 
 
Therefore, the sum of squares for testing the temperature main effect is 

(Temperature) ( ) ( )
46,814.0 31, 464.0
15,350.0

Model Model ModelSS SS FM SS RM= −
= −
=

 

The F-statistic is  

0
(Temperature) / 2

( )
15,350.0 / 2

434.3
17.67

Model

E

SSF
MS FM

=

=

=

 

The P-value for this statistic is less than 0.0001.  Therefore, we would conclude that the 
main effect of temperature has an effect on battery life.  Since both the main effect of 
temperature and the materials type-temperature interaction are significant, we would 
likely reach the same conclusions for this data that we did from the original balanced-data 
factorial in the textbook.  

S15-4.2.  The Type 3 Analysis 
Another approach to the analysis of an unbalanced factorial is to directly employ the 
Type 3 analysis procedure discussed previously.  Many computer software packages will 
directly perform the Type 3 analysis, calculating Type 3 sums of squares or “adjusted” 
sums of squares for each model effect.  The Minitab General Linear Model procedure 
will directly perform the Type 3 analysis.  Remember that this procedure is only 
appropriate when there are no empty cells (i.e., ). n iij > 0,  for all , j



Output from the Minitab General Linear Model routine for the unbalanced version of 
Example 5-1 in Table 3 follows: 

General Linear Model 
Factor     Type    Levels Values 

Mat       fixed      3           1 2 3 

Temp    fixed      3      15  70 125 

 

Analysis of Variance for Life, using Adjusted SS for Tests 

 

Source     DF     Seq SS        Adj SS     Adj MS         F          P 

Mat                2     2910.4     3202.4     1601.2       3.69      0.042 

Temp             2    35302.1    36588.7    18294.3   42.13     0.000 

Mat*Temp     4     8601.5     8601.5     2150.4       4.95      0.005 

Error             22     9553.8     9553.8      434.3 

Total             30    56367.9 

 

The “Adjusted” sums of squares, shown in boldface type in the above computer output, 
are the Type 3 sums of squares.  The F-tests are performed using the Type 3 sums of 
squares in the numerator.  The hypotheses that are being tested by a type 3 sum of 
squares is essentially equivalent to the hypothesis that would be tested for that effect if 
the data were balanced.  Notice that the error or residual sum of squares and the 
interaction sum of squares in the Type 3 analysis are identical to the corresponding sums 
of squares generated in the regression-model formulation discussed above. 

When the experiment is unbalanced, but there is at least one observation in each cell, the 
Type 3 analysis is generally considered to be the correct or “standard” analysis.  A good 
reference is Freund, Littell and Spector (1988).  Various SAS/STAT users’ guides and 
manuals are also helpful.    

S15-4.3.  Type 1, Type 2, Type 3 and Type 4 Sums of Squares 
At this point, a short digression on the various types of sums of squares reported by some 
software packages and their uses is warranted.  Many software systems report Type 1 and 
Type 3 sums of squares; the SAS software system reports four types, called (originally 
enough!!) Types 1, 2, 3 and 4.  For an excellent detailed discussion of this topic, see the 
technical report by Driscoll and Borror (1999). 

As noted previously, Type 1 sums of squares refer to a sequential or “effects-added-in- 
order” decomposition of the overall regression or model sum of squares.  In sequencing 
the factors, interactions should be entered only after all of the corresponding main effects, 
and nested factors should be entered in the order of their nesting. 



Type 2 sums of squares reflect the contribution of a particular effect to the model after all 
other effects have been added, except those that contain the particular effect in question.  
For example, an interaction contains the corresponding main effects.  For unbalanced 
data, the hypotheses tested by Type 2 sums of squares contain, in addition to the 
parameters of interest, the cell counts (i.e., the nij).  These are not the same hypotheses 
that would be tested by the Type 2 sums of squares if the data were balanced, and so most 
analysts have concluded that other definitions or types of sums of squares are necessary.  
In a regression model (i.e., one that is not overspecified, as in the case of an ANOVA 
model), Type 2 sums of squares are perfectly satisfactory, so many regression programs 
(such as SAS PROC REG) report Type 1 and Type 2 sums of squares. 

Type 3 and Type 4 sums of squares are often called partial sums of squares.  For balanced 
experimental design data, Types 1, 2, 3, and 4 sums of squares are identical.  However, in 
unbalanced data, differences can occur, and it is to this topic that we now turn. 

To make the discussion specific, we consider the two-factor fixed-effects factorial model.  
For proportional data, we will find that for the main effects the relationships between the 
various types of sums of squares is Type 1 = Type 2, and Type 3 = Type 4, while for the 
interaction it is Type 1 = Type 2 = Type 3 = Type 4.  Thus the choice is between Types 1 
and 4.  If the cell sample sizes are representative of the population from which the 
treatments were selected, then an analysis based on the Type 1 sums of squares is 
appropriate.  This, in effect, makes the factor levels have important that is proportional to 
the sample sizes.  If this is not the case, then the Type 3 analysis is appropriate. 

With unbalanced data having at least one observation in each cell, we find that for the 
main effects that Types 1 and 2 will generally not be the same for factor A, but Type 1 = 
Type 2 for factor B.  This is a consequence of the order of specification in the model.  For 
both main effects, Type 3 = Type 4.  For the interaction, Type 1 = Type 2 = Type 3 = 
Type 4.  Generally, we prefer the Type 3 sums of squares for hypothesis testing in these 
cases. 

If there are empty cells, then none of the four types will be equal for factor A, while Type 
1 = Type 2 for factor B.  For the interaction, Type 1 = Type 2 = Type 3 = Type 4.  In 
general, the Type 4 sums of squares should be used for hypothesis testing in this case, but 
it is not always obvious exactly what hypothesis is being tested.  When cells are empty, 
certain model parameters will not exist and this will have a significant impact on which 
functions of the model parameters are estimable.  Recall that only estimable functions can 
be used to form null hypotheses.  Thus, when we have missing cells the exact nature of 
the hypotheses being tested is actually a function of which cells are missing.  There is a 
process in SAS PROC GLM where the estimable functions can be determined, and the 
specific form of the null hypothesis involving fixed effects determined for any of the four 
types of sum of squares.   The procedure is described in Driscoll and Borror (1999). 

 

S15-4.4.  Analysis of Unbalanced Data using the Means Model 
Another approach to the analysis of unbalanced data that often proves very useful is to 
abandon the familiar effects model, say 
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and employ instead the means model 
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where of course µ µ τ β τβij i j ij= + + + ( ) . This is a particularly useful approach when 
there are empty cells; that is, nij = 0 for some combinations of i and j.  When the ijth cell 
is empty, this means that the treatment combination τ βi  and j is not observed.  
Sometimes this happens by design and sometimes it is the result of chance.  The analysis 
employing the means model is often quite simple, since the means model can be thought 
of as a single-factor model with ab – m treatments, where m is the number of empty 
cells. That is, each factor level or treatment in this one-way model is actually a treatment 
combination from the original factorial. 

To illustrate, consider the experiment shown in Table 4.  This is a further variation of the 
battery life experiment (first introduced in text Example 5-1), but now in addition to the 
missing observations in cells (1,1), (1,2), (1,3), (2,3) and (3,2), the (3,3) cell is empty.  In 
effect, the third material was never exposed to the highest temperature, so we have no 
information on those treatment combinations. 

 

Table 4. Modified Data from Example 5-1 with an Empty Cell  

Temperature Material 
types 15 70 125 

1 130,155, 
180 

40,80,75 70,82,58 

2 150,188, 
159,126 

136,122,   
106,115 

25,70,45 

3 138,110,  
168,160 

120,150, 
139 

 

 

It is easy to analyze the data of Table 4 as a single-factor experiment with ab – m = (3)(3) 
– 1 = 8 treatment combinations.  The Minitab one-way analysis of variance output 
follows.  In this output, the factor levels are denoted m m . m11 12 23, , ,

 

 



One-way Analysis of Variance 
 
Analysis of Variance for BattLife 
Source     DF        SS        MS        F        P 
Cell        7     43843      6263    14.10    0.000 
Error      19      8439       444 
Total      26     52282                              

Individual Confidence Intervals Based on Pooled Std Dev.        
Level       N      Mean     StDev  ------+---------+---------+--------+ 
m11         3    155.00     25.00                        (----*----)  
m12         3     65.00     21.79      (----*----)  
m13         3     70.00     12.00       (----*----)  
m21         4    155.75     25.62                         (---*----)  
m22         4    119.75     12.66                  (---*---)  
m23         3     46.67     22.55  (----*----)  
m31         4    144.00     25.97                      (----*---)  
m32         3    136.33     15.18                    (----*----)  
                                   ------+---------+---------+--------+ 
Pooled StDev =    21.07                 50       100       150      200 
Fisher's pairwise comparisons 
Family error rate = 0.453 
Individual error rate = 0.0500 
 
Critical value = 2.093 
 
Confidence Intervals for (column level mean) - (row level mean) 
 
                 m11         m12         m13         m21         m22         m23 
 
    m12        53.98 
              126.02 
 
    m13        48.98      -41.02 
              121.02       31.02 
 
    m21       -34.44     -124.44     -119.44 
               32.94      -57.06      -52.06 
 
    m22         1.56      -88.44      -83.44        4.81 
               68.94      -21.06      -16.06       67.19 
 
    m23        72.32      -17.68      -12.68       75.39       39.39 
              144.35       54.35       59.35      142.77      106.77 
 
    m31       -22.69     -112.69     -107.69      -19.44      -55.44     -131.02 
               44.69      -45.31      -40.31       42.94        6.94      -63.64 
 
    m32       -17.35     -107.35     -102.35      -14.27      -50.27     -125.68 
               54.68      -35.32      -30.32       53.11       17.11      -53.65 
 
 
                 m31 
 
    m32       -26.02 
               41.36 

 



 
First examine the F-statistic in the analysis of variance.  Since F = 14.10 and the P-value 
is small, we would conclude that there are significant differences in the treatment means.  
We also used Fisher’s LSD procedure in Minitab to test for differences in the individual 
treatment means.  There are significant differences between seven pairs of means: 

µ µ µ µ µ µ µ µ
µ µ µ µ µ µ

11 12 11 13 11 22 11 23

21 22 21 23 22 23

≠ ≠ ≠ ≠
≠ ≠ ≠

, , ,
, ,  and 

 

Furthermore, the confidence intervals in the Minitab output indicate that the longest lives 
are associated with material types 1,2 and 3 at low temperature and material types 2 and 3 
at the middle temperature level. 

Generally, the next step is to form and comparisons of interest (contrasts) in the cell 
means.  For example, suppose that we are interested in testing for interaction in the data. 
If we had data in all 9 cells there would be 4 degrees of freedom for interaction.  
However, since one cell is missing, there are only 3 degrees of freedom for interaction.  
Practically speaking, this means that there are only three linearly independent contrasts 
that can tell us something about interaction in the battery life data.  One way to write 
these contrasts is as follows: 

C
C
C

1 11 13 21 2

2 21 22 31 3

3 11 12 31 3

3

2

2

= − − +
= − − +
= − − +

µ µ µ µ
µ µ µ µ
µ µ µ µ

 

Therefore, some information about interaction is found from testing  

H C H C H C0 1 0 2 0 30 0: , : , : 0= = = and  

Actually there is a way to simultaneously test that all three contrasts are equal to zero, but 
it requires knowledge of linear models beyond the scope of this text, so we are going to 
perform t-tests.  That is, we are going to test   
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Consider the first null hypothesis.  We estimate the contrast by replacing the cell means 
by the corresponding cell averages.  This results in 
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The variance of this contrast is  
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From the Minitab ANOVA, we have MSE = 444 as the estimate of , so the t-statistic 
associated with the first contrast C

σ 2
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which is not significant.  It is easy to show that the t-statistics for the other two contrasts 
are for C2
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and for C3
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Only the t-statistic for C3 is significant (P = 0.0012).  However, we would conclude that 
there is some indication between material types and temperature. 

Notice that our conclusions are similar to those for the balanced data in Chapter 5.  There 
is little difference in materials at low temperature, but at the middle level of temperature 
only materials types 2 and 3 have the same performance – material type 1 has 
significantly lower life.  There is also some indication of interaction, implying that not all 
materials perform similarly at different temperatures.  In the original experiment we had 
information about the effect of all three materials at high temperature, but here we do not.  
All we can say is that there is no difference between material types 1 and 2 at high 



temperature, and that both materials provide significantly reduced life performance at the 
high temperature than they do at the middle and low levels of temperature.  

 

 

S15-5.  Computer Experiments 
There has been some interest in recent years in applying statistical design techniques to 
computer experiments.  A computer experiment is just an experiment using a computer 
program that is a model of some system.  There are two types of computer models that 
are usually encountered.  The first of these is where the response variable or output from 
the computer model is a random variable.  This often occurs when the computer model is 
a Monte Carlo or computer simulation model.  These models are used extensively in 
many areas, including machine scheduling, traffic flow analysis, and factory planning. 
When the output of a computer model is a random variable, often we can use the methods 
and techniques described in the book with little modification.  The response surface 
approach has been shown to be quite useful here. What we are doing then, is to create a 
model of a model.  This is often called a metamodel.  

In some computer simulation models the output is observed over time, so the output 
response of interest is actually a time series.  Many books on computer simulation discuss 
the analysis of simulation output.  Several specialized analysis techniques have been 
developed. 

The other type of computer model is a deterministic computer model. That is, the output 
response has no random component, and if the model is run several times at exactly the 
same settings for the input variables, the response variable observed is the same on each 
run.  Deterministic computer models occur often in engineering as the result of using 
finite element analysis models, computer-based design tools for electrical circuits, and 
specialized modeling languages for specific types of systems (such as Aspen for 
modeling chemical processes).   

The design and analysis of deterministic computer experiments is different in some 
respects from the usual types of experiments we have studied.  First, statistical inference 
(tests and confidence intervals) isn’t appropriate because the observed response isn’t a 
random variable.  That is, the system model is  

 1 2( , , , )ky f x x x=  

and not  

1 2( , , , )ky f x x x ε= +  

where ε  is the usual random error component.  Often the experimenter want to find a 
model that passes very near (or even exactly through!) each sample point generated, and 
the sample points cover a very broad range of the inputs.  In other words, the possibility 
of fitting an empirical model (low-order polynomial) that works well in a region of 
interest is ignored.  Many types of fitting functions have been suggested.  Barton (1992) 
gives a nice review. 



If a complex metamodel is to be fit, then the design must usually have a fairly large 
number of points, and the designs dominated by boundary points that we typically use 
with low-order polynomial are not going to be satisfactory.  Space-filling designs are 
often suggested as appropriate designs for deterministic computer models.  A Latin 
hypercube design is an example of a space-filling design. In a Latin hypercube design, 
the range of each factor is divided into n equal-probability subdivisions.  Then an 
experimental design is created by randomly matching each of the factors.  One way to 
perform the matching is to randomly order or shuffle each of the n divisions of each 
factor and then take the resulting order for each factor.  This ensures that each factor is 
sampled over its range.  An example for two variables and n = 16 is shown below. 
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The design points for this Latin hypercube are shown in the Table 5.  For more 
information on computer experiments and Latin hypercube designs, see Donohue (1994), 
McKay, Beckman and Conover (1979), Welch and Yu (1990), Morris (1991), Sacks, 
Welch and Mitchell (1989), Stein, M. L. (1987), Owen (1994) and Pebesma and 
Heuvelink (1999). 

 

Table 5. A Latin Hypercube Design 
A B 
8 9 
11 8 
9 16 



13 1 
16 5 
6 2 
12 10 
14 13 
5 15 
4 11 
7 3 
1 4 
10 7 
15 6 
2 12 
3 14 
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